

FUNZIONI RELATIVE AL MENU" "SEtP" per TM9Xx "SetP" MENU RELATED FUNCTIONS for TM9Xx

"SEtP" menu is oriented to various Set-Points.
Secutity key is from 9000 to 9999.
For the access to the instrumental configuration push 'E' at least for 4 sec.
Proposed parameter are :

MAIN Set-Point	(1)	SEt	$\underline{0050}$	values and limits in accord to selected input
Secondary Set-Point	(2)	SEt2	$\underline{0050}$	values and limits in accord to selected input
LIMIT I Set-Point	(L1)	SEtL	$\underline{0050}$	values and limits in accord to selected input
LIMIT II Set-Point	(L2)	SEtL'	$\underline{0050}$	values and limits in accord to selected input
MINIMUM Set-Point		${ }^{*}$ S Lo	$\underline{0000}$	
values and limits in accord to selected input				
MAXIMUM Set-Point		${ }^{*}$ S Hi	$\underline{0500}$	values and limits in accord to selected input
Set-Point 1 or 2 or rem. switch	${ }^{*}$ SP12	$\underline{S E t 1}$	SEt1 - SEt2 - SEtr (if present)	
Remote SetPoint start of scale	*SrLo	$\underline{x x x x}$	$-1999 \div 9999$ but values and limits in accord to selected input	
Remote SetPoint full of scale	*SrHi	xxxx	$-1999 \div 9999$ but values and limits in accord to selected input	

Setting values meaning is:
SEt is the typical working set-point. When setting up SEt the led 'M' flashes.
SEt2 represents a second Set-Point and is available to meet particular requirements such as the quick recipe exchange (processing) or the savings during breaks or other processing. When setting up Set2 the led 'M' flashes.
SEtL is the Set-Point of the first alarm ($\mathrm{I}=\mathrm{L} 1$) and in accordance with the selected type of alarm determine the action of output associated with it. When setting up SEtL the led 'I' flashes.
SEtL' is the Set-Point of the second alarm (II = L2) and in accordance with the selected type of alarm determine the action of output associated with it. When setting up SetL' the led 'Il' flashes.
S Lo here can be set the the minimum value of Set-Point, so as to limit possible mistakes by users. They are directly affected SEt, SEt2, SEtr (if any remote Set-Point) and alarms (if absolute).
$\mathbf{S H i} \quad$ here can be set the the maximum value of Set-Point, so as to limit possible mistakes by users. They are directly affected SEt, SEt2, SEtr (if any remote Set-Point) and alarms (if absolute).
SP12 this parameter determines wich is the operative Set-Point. You can choose between SEt, SEt2 and SEtr (if any remote Set-Point).
SrLo minimum value of remote Set-Point (only if remote Set-Point is available).
$\mathrm{SrHi} \quad$ maximun value of remote Set-Point (only if remote Set-Point is available).

ANNOTATION RELATED TO REMOTE SET-POINT:
Remote Set-Point related electrical parameters (e.g. $4 \div 20 \mathrm{~mA}, 0 \div 1 \mathrm{Vdc}, 0 \div 5 \mathrm{Vdc}, \ldots$) must be defined at order time and will be reported on instrument identification label.

Examples:

Remote Set-Point input $4 \div 20 \mathrm{mAdc}$,
Remote Set-Point input 0 $\div 1 \mathrm{Vdc}$,
Remote Set-Point input 0ㄴ 5 Vdc ,
scale $0 \div 500^{\circ} \mathrm{C}$:
scale $50 \div 450^{\circ} \mathrm{C}$:
scale $0 \div 1000^{\circ} \mathrm{C}$:

SrLo $=0$
$\mathrm{SrHi}=500$
SrLo $=50$
$\mathrm{SrHi}=450$
SrLo $=0$
$\mathrm{SrHi}=1000$

* these parameters will be masked if setting value 'LK1' (menu 'ConF') is 'YES'.

THERMOSYSTEMS s.r.I. Via delle Industrie, 8-24040 Fornovo San Giovanni (BG) - ITALY phone: (+39) $\mathbf{0 3 6 3} 350159$ fax: (+39) $\mathbf{0 3 6 3} 350362$ web: www.thermosystems.it e-mail:info@thermosystems.it
"Out" menu provides the fundamental parameters for controller adjustment, including alarms.
Are accessed by holding down the key 'E' for at least 4 "and then acting on the button 'DOWN' to 1 time. Security key is from 8000 to 8999.

The parameters that appear are as follows:

Setting values meaning is :
Pb H is the Proportional Band for heating and is expressed in \% related to the range for selected input.

$$
\begin{array}{ll}
\text { eg. } 1 \mathrm{InP}=\mathrm{J} \rightarrow \text { scale } 0 \div 900^{\circ} \mathrm{C} ; & \text { if } \mathrm{PbH}=010.0(10,0 \%) \rightarrow \mathrm{Pb} \mathrm{H} \text { is } 90,0^{\circ} \mathrm{C}(10 \% \text { of } 900) . \\
\text { eg. } 2 \mathrm{InP}=\mathrm{P} \rightarrow \text { scale }-199 \div 500^{\circ} \mathrm{C} ; & \text { if } \mathrm{PbH}=010.0(10,0 \%) \rightarrow \mathrm{Pb} \mathrm{H} \text { is } 69,9^{\circ} \mathrm{C}(10 \% \text { of } \mathrm{l}-199+500 \mid) . \\
\text { eg. } 3 \mathrm{InP}=1 \mathrm{~V} \rightarrow \text { scale dSHi-dSLo=500punti ; } & \text { if } \mathrm{PbH}=010.0(10,0 \%) \rightarrow \mathrm{Pb} \mathrm{H} \text { is } 50,0 \text { points }(10 \% \text { of } 500) .
\end{array}
$$

If $\mathrm{Pb}>0$ the function is PID type (thermoregulator) which can be set separately proportional action (Pb H), derivative action (dt H) and the integral action (it H).
If $\mathrm{Pb}=0$ the function is ON -OFF type (thermostat) for which you can set higher hysteresis (hYHH) and lower (hYLH) independently (see parameters below).
dt H represents the derivative action time (in minutes).
it H represents the integral action time (in minutes).
ct H is the cycle time ($\mathrm{tON}+\mathrm{tOFF}$) that is the time available to supply power.
For example, if regulator calculates required power equal to 30% with a cycle time set to 10 " will output 'on' for 3 " and turn 'off' for 7 " but with a cycle time set to 1 " will activate the output for 0.3 " and 0.7 " for the off. Obviously, low cycle times allow better result in control but stress output devices and then have the prerogative static outputs (in case is used ct $\mathrm{H}=1$ ") and longer cycle times comply with components that do not like to be requested too frequently (ct H = 20 "or 30" for contactors or power relays).
Special case 'continuous output' where ct $\mathrm{H}=0$ "(maximum speed ~ 0.1 ")..
hyHH upper heating hysteresis (only with ON-OFF function).
The value here set is in addition to Set-Point value to determine the exact point of output switch. (eg Set-Point $=50^{\circ} \mathrm{C}$, hyHH $=4^{\circ} \mathrm{C}$, the output switches at $54^{\circ} \mathrm{C}$).
hyLH lower heating hysteresis (only with ON-OFF function).
The value here set must be subtracted to Set-Point to determine the exact point of output switch.
(eg Set-Point $=50^{\circ} \mathrm{C}$, hyHH $=4^{\circ} \mathrm{C}$, hyLH $=3^{\circ} \mathrm{C}$, the output is triggered at $54^{\circ} \mathrm{C}$ and returned to $47^{\circ} \mathrm{C}$).
$\mathrm{H}-\mathrm{C}$ heating or cooling function.
By selecting 'H' output is active for input lower than set point while with ' C ' for higher values.
M-A MANUAL / AUTOMATIC function. Normally the instrument operates in AUTO but for special needs you can operate in MANUAL forcing power (set in P.Man).
You can rapid access to 'MANUAL' function pressing M/A key for 8" while 'AUTO' function can be reach simply acting on M/A key.
CAUTION: 'MANUAL' working is potentially dangerous and should be made only with knowledge of the facts.
P.MAn is the supplied power in 'MANUAL' condition.

ArS Anti-Reset Window : percentage of proportional component forced to Set-Point corresponding and allows definition of proportional power value with null deviation Systems characterized by high losses require higher values.
tun here provides the 'Tuning Model' that will use the controller to be launched in case the AUTOTUNING.
St: non-intrusive model that is activated only once at launch and the parameters are determined self.
At: non-intrusive model that is based on St but some parameters are recalculated continuosly.
M.Po Max Power Limiting (ECONOMY): allow power limitation related with max system power controlled. This feature is important when there are oversized systems and for energy saving.
riSE Power-on rising time (ramp = SOFT-START): allow supply energy in gradual mode (ramp).
When the instrument switch on the power output is gradually increased until the power calculated in the time set here (useful for resistance heating that will be not stressed, etc..)
P.und Underrange Power: allows you to set the desired power in a underrange condition.
'nAt' (natural) assumes a scale where there is extensive underrange and behaves accordingly.
P.ovr Overrange Power: allows you to set the desired power in a overrange condition.
'nAt' (natural) assumes a scale where there is extensive overrange and behaves accordingly.
LIM 1 Setting 'type' (function) for the desired LIMIT 1 (alarm 1) [see chart].

L00	=	band alarm	relative	direct (outside active)
L01	=	maximum alarm	relative	direct (outside active = after)
L02	=	minimum alarm	relative	direct (outside active = before)
L03	=	maximum alarm	absolute	direct (outside active $=$ after)
L04	=	band alarm	relative	inverse (inside active)
L05	=	maximum alarm	relative	inverse (outside active = before)
L06	=	minimum alarm	relative	inverse (outside active = after)
L07	=	maximum alarm	absolute	inverse (outside active = before)
L08	=	OFF alarm (no alarm)		
L09	=	dedicated alarm to 'step' relay (only for programmer version)		
L10	=	dedicated alarm to 'band alarm' (only for programmer version)		
HbM	=	dedicated alarm to 'HbM' function (see A. InP group)		
L-C	$=$	dedicated alarm to 'cool	' ${ }^{\text {' funct }}$	

$\mathbf{L 2 0} \div \mathbf{L 2 7}$ as $\mathrm{L} 00 \div \mathrm{L} 07$ but with 'intelligent' function in that the alarm does not play unless you have created a situation 'appropriate' in the terms to be analyzed.
Typical is the case of an minimum alarm (heating process, etc..), where with type L02 alarm at swith-on there is immedistely ON alarm output but would be more correct if the alarm occur only in presence of fall of temperature (alarm type L22) once in regulation and so on. etc. .
$\mathrm{L} 30 \div \mathrm{L3} 3$ as $\mathrm{L} 00 \div \mathrm{L} 07$ but with memory function.
In practice, once activated the alarm can be disabled if you stopped the condition that caused it and after a RESET the alarm itself.
The reset can be obtained by key pressing (show the Set of alarm in question and press the ENTER
and DOWN buttons simultaneously).
$\mathrm{L} 40 \div \mathrm{L} 47$ as $\mathrm{L} 20 \div \mathrm{L} 27$ but with memory function.
In practice, once activated the alarm can be disabled if you stopped the condition that caused it and after a RESET the alarm itself.
The reset can be obtained by key pressing (show the Set of alarm in question and press the ENTER and DOWN buttons simultaneously).

Pb C is the Proportional Band for cooling and is expressed in \% related to the range for selected input. If $\mathrm{Pb}>0$ the function is PID type (thermoregulator) which can be set separately proportional action (Pb C), derivative action (dt C) and the integral action (it C).

If $\mathrm{Pb}=0$ the function is ON-OFF type (thermostat) for which you can set higher hysteresis (hYHC) and lower (hYLC) independently (see parameters below).
dt C represents the derivative action time (in minutes).
it \mathbf{C} represents the integral action time (in minutes).
ct C is the cycle time (tON + tOFF) that is the time available to supply power (see above ct H).
hyHC upper cooling hysteresis (only with ON-OFF function).
The value here set is in addition to Set-Limit value to determine the exact point of output switch.
(eg Set-Limit $=60^{\circ} \mathrm{C}$, hyHC $=4^{\circ} \mathrm{C}$, the output switches at $64^{\circ} \mathrm{C}$).
hyLC lower cooling hysteresis (only with ON-OFF function).
The value here set must be subtracted to Set-Limit to determine the exact point of output switch.
(eg Set-Point $=60^{\circ} \mathrm{C}$, hyHC $=4^{\circ} \mathrm{C}$, hyLC $=3^{\circ} \mathrm{C}$, the output is triggered at $64^{\circ} \mathrm{C}$ and returned to $57^{\circ} \mathrm{C}$).
OLP overlapping (overlap / dead zone) is the percentage of proportional component of the cooling power of forced at the Set-Limit (equivalent to Ars for heating) .
rEF allows you to set the type of used refrigerant and has a direct impact on 'ct C' and 'rGA'.

rEF $=$ Air	ct $C=10$	rGA $=1.00$
rEF $=\mathbf{O i L}$	ct $C=4$	rGA $=0.80$
rEF $=\mathbf{H 2 O}$	ct $C=2$	rGA $=0.40$

rGA Gain on Cooling: parameter that directly affects the cooling proportional band. The report will be 'effective cooling Pb ' $=\mathrm{Pb} \mathrm{C} / \mathrm{rGA}$.
LIM 2 Setting 'type' (function) for the desired LIMIT 2 (alarm 2) [see chart LIMIT 1]. All as' LIM 1 'with the exception of type' LC' that is not available.

THERMOSYSTEMS phone: (+39) 0363350159 fax: (+39) 0363350362

NOTE APPLICATIVE

"A.Out" menu is dedicated to serial communication port and to retransmitted output (mutually exclusive). Security key is from 7000 to 7999.
For the access to the instrument configuration, push 'E' for 4 sec ., then push DOWN key twice.

"SERIAL COMUNICATION PORT" SECTION

Serial communication output must be correctly configured with five related parameters:
Communication Protocol
Serial Address
Baudrate
Local / Remote Mode (Loc/rem)
Delay rx/tx [msec]

Prot	$\underline{O F F}$		ASC o Mdb (see ordering details)					
Addr	$\underline{0001} \div$	$\boxed{0255}$						
bAud	$\underline{0300}$	0600	1200	2400	4800	$\underline{9600}$	19.2	38.4
ModE	$\underline{L O C}$	rEM						
dLY	0001	$\underline{0002}$	0003	0004	0005	0006	0008	0010

Here details about it:

Prot serial protocol must be set to "ASC" or "Mdb", in order to use the serial comunication port.
"OFF"
"ASC" or
"Mdb"
Addr corresponding to univocal address assigned to the instrument (default=0001).
It is very important that with the same network there aren't any other instruments with the same address so that no conflicts will take place.
bAud
"300"
"600"
"1200"
"2400"
"4800"
"9600"
"19.2"
"38.4"
ModE
Loc
rEM
dLy this is the desidered delay time between reception and transmission in serial communication protocol.
You should choose from 1, 2 (default), 3, 4, 5, 6, 8 and 10 mSec .
This parameter is very important to correct handshake in old and new PCs, different operating systems, various hardwares, fast and slow systems.
Longer times offer best compatibility but communication will be slower.
NOTE: - Refer to the 'serial communication manual' for all explanations concerning correct use and protocol grammar.

- Refer to 'serial communication manual' for some examples of software communication by "C" and "BASIC", both for ASCII protocol and MODBUS protocol.

After serial communication protocol parameters, related retransmitted output, are shown (N.B. mutually exclusive).

"RETRASMITTED ANALOG OUTPUT" SECTION

Retransmitted analog output must be correctly programmed with 9 related parameters (5 necessary).
Source
Displays Low
Output Low
Displays High
Output High
Analog Output minimum [\%]
Analog Output maximum [\%]
Analog Output \% for UnderRange
Analog Output \% for OverRange

Src	OFF diS	SEt	SEL' Pot
dSLo	-1999 $\div 9999$	(default 0000)	
OuLo	$\underline{0000} \div 9999$		
dsHi	$-1999 \div 9999$	(default 9999)	
OuHi	$0000 \div 9999$		
O.InF	$\underline{0000} \div 0110$		
O.SuP	$0000 \div 0110$		
O.und	$0000 \div 0110$		
O.ovr	$0000 \div 0110$	nAt	

Explanation about the parameters:

Src
dSLo DISPLAYS LOW : this parameter indicates the visualization value to which the analog output
OuLo ANALOG LOW : it corresponds to analog output minumum (0 $\div 9999$)
dSHi DISPLAYS HIGH this parameter indicates the visualization value to which the analog output
OuHi
SOURCE: variable unit source which should be retransmitted
"OFF" retransmitted output disabled (not working). In this case you can use serial communication port.
"diS" process variable retransmission
"SEt" main output set-point retransmission
"SEL" limit L (= L1 = I) output set-point retransmission
"SEL'" limit L' (= L2 = I I) output set-point retransmission
"Pot" power output retransmission minimum corresponds (-1999 $\div 9999$). maximum corresponds (-19999999). ANALOG HIGH : it corresponds to analog output maximum ($0 \div 9999$)

NOTE: - Retransmitted output is $0 \div 10 \mathrm{~V}$; if different values (eg. $2 \div 10 \mathrm{~V}$) or different units (eg. $0 \div 20 \mathrm{~mA}$) were used, they should correspond to $0 \div 10 \mathrm{~V}$.

- If inverse retransmitted output were necessary (output decreases if the value increases and vice versa, eg. $20 \div 0 \mathrm{~mA}$) just set in "OuLo" a value which is higher than the one set in "OuLHi", in order to achieve the intended condition.

EXAMPLES: e.g. 1 Output $0 \div 10 \mathrm{~V}$ display range $0 \div 1000$
Setting "dSLo"=0; "OuLo"=0; "dSHi"=1000; "OuHi"=9999
e.g. 2 Output $0 \div 20 \mathrm{~mA}$ display range $0 \div 100$

Setting "dSLo "=0; "OuLo "=0; "dSHi"=100; "OuHi"=9999
e.g. 3 Output $4 \div 20 \mathrm{~mA}$ display range $100.0 \div 500.0$

Setting "dSLo "=100.0; "OuLo "=2000; "dSHi"=500.0; "OuHi"=9999

THERMOSYSTEMS s.r.I. Via delle Industrie, 8 - 24040 Fornovo San Giovanni (BG) - ITALY phone: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 1 5 9}$ fax: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 3 6 2}$ web: www.thermosystems.it e-mail:info@thermosystems.it

```
O.InF ANALOG OUTPUT MINIMUM [ \% ] with this parameter is defined, in percent, the minimum desired output.
For example in case of \(0 \div 20 \mathrm{~mA}\) output if you want to have as a minimum output current set to 2 mA you should impose \(\mathrm{O} . \mathrm{InF}=10 \%\left(100 \% / 20 \mathrm{~mA}^{*} 2 \mathrm{~mA}=10 \%\right) \rightarrow\) setting \(\mathrm{O} . \mathrm{InF}=0010\).
O.SuP ANALOG OUTPUT MAXIMUM [ \% ] with this parameter is defined, in percent, the maximum desired output.
For example in case of \(0 \div 20 \mathrm{~mA}\) output if you want to have the maximum output current set to 21 mA you should impose O.SuP=105\% ( \(100 \% / 20 \mathrm{~mA}^{*} 21 \mathrm{~mA}=105 \%\) ) \(\rightarrow\) setting O.SuP=0105.
O.und ANALOG OUTPUT for UNDERRANGE [ \% ] with this parameter is defined, in percentage, the value of output in presence of the condition of UnderRange.
Under natural conditions (= nat) there is the extension of scale set in the parameters relating to the retransmitted output dSLo/OuLo and dSHi/OuHi (eg. in case of \(4 \div 20 \mathrm{~mA}\) output in the \(0 \div 500^{\circ} \mathrm{C}\) range for UnderRange it will outgoing to 0 mA ).
If percentages values of \(O\). und is set, the output behavior will be forced to the desired value.
Note that the parameter O.InF dominates O.und and if you set a value of O.und less than O.InF the value available in output will be set to O.Inf .
Also the parameter O.SuP dominates O.und and if you set a value of O.und more than O. SuP the value available in output will be set to O.SuP.
O.ovr ANALOG OUTPUT for OVERRANGE [ \% ] with this parameter is defined, in percentage, the value of output in presence of the condition of OverRange.
Under natural conditions (= nat) there is the extension of scale set in the parameters relating to the retransmitted output dSLo/OuLo and dSHi/OuHi (eg. In case of \(4 \div 20 \mathrm{~mA}\) output in the \(0 \div 500^{\circ} \mathrm{C}\) range for OverRange it will leaving more than 20 mA ).
If percentages values of \(O\).ovr is set, the output behavior will be forced to the desired value.
Keep present that the parameter O.SuP dominates O.ovr parameter and if you set a value of O.ovr more than O. SuP value available in the output will be set to O.SuP.
Also the parameter O .InF dominates O . ovr and if you set a value of O .ovr less than O . InF the value available in the output will be set in O . InF .
```

NOTE: From all above it is clear that the four parameters related to retransmitted output offer practical solutions, and elegant at the same time, for various problems of application, expanding the possibilities of performance and the ability to interface with these instruments.
All this allows to fully meet the requirements of safety operations and at the same time requests for components present in the retransmission chain.

THERMOSYSTEMS s.r.I. Via delle Industrie, 8-24040 Fornovo San Giovanni (BG) - ITALY

"A.InP" menu is oriented to digital inputs (if present) and to HBM [Heater Break Monitor] (if present).
Security key is from 6000 to 6999.
For the access to the instrumental configuration push 'E' at least for 4 sec., then push 'DOWN' key 3 times.

"DIGITAL INPUT" SECTION

Digital inputs allow to directly operate without using the front keyboard and its related menu and sub menu.
They can be activated by electromechanical devices (eg. switch, buttons) and by electrical dc signals.
They allow interaction with external automatism.
Related parameters are:

Dig.Inp 1	di 1	$\underline{O F F}$	kEy	HLd	ChS	L-r	PrG
Dig.Inp 2	di 2	$\underline{O F F}$	kEy	HLd	ChS	L-r	PrG

Here, details about Dig.Inp 1 (di 1) and Dig.Inp 2 (di 2) setup:
OFF digital input disable (not working)
kEy by-pass keyboard lock (if digital input has been activated, key value is forced to ' 0 ' \rightarrow all function free)
HLd Hold measuring function
(display input value will be freezed: controller action consequently operates).
N.B. this operative condition can be very dangerous).

ChS switch set point from SEt to SEt2
(if digital input has been deactivated Set-Point 'SEt' is operative
if digital input has been activated Set-Point 'SEt2' is operative)
L-r switch local/remote operating Set-Point
(if digital input has been deactivated, the operating one is the LOCAL Set Point
if digital input has been activated, the operating one is REMOTE Set Point)
PrG Reserved functions for instruments in programmer version:
Dig.Inp 1 corresponds to START input (N.B.: the same function can be activated by keyboard).
When signal goes low (internal pull-up respected higher than internal reference [0]) the function is executed.
Signal can be temporary (pushbutton) or stable (switchbutton).
Dig.Inp 1 is the one with the lowest priority.
Dig.Inp 2 corresponds to STOP input (or PAUSE) (N.B.: the same function can be activated by keyboard).
When signal goes low (internal pull-up respected higher than internal reference [0]) the function is executed.
It can be temporary (pushbutton) or stable (switchbutton).
Dig.Inp 2 is the one with the higher priority (thus it controls START).
Dig.Inp 1 + Dig.Inp 2 corresponds to RESET function (N.B.: the same function can be activated by keyboard).
When both signals go low (internal pull-up respected higher than internal reference [0]) the function is executed.
They can be temporary (pushbutton) or stable (switchbutton) signals.
Dig.Inp 1 + Dig.Inp 2 have the highest priority inputs, (independently of START and STOP).

$$
\begin{aligned}
& \text { FUNZIONI RELATIVE AL MENU' "A.InP" per TM9Xx - sez. HBM } \\
& \text { "A.InP" MENU RELATED FUNCTIONS for TM9Xx - HBM sect. } \\
& \hline
\end{aligned}
$$

After showing the parameters concerning DIGITAL INPUT, HBM (Heather Break Monitor)-parameters are presented (only if HBM function is present).
They correspond to integrated control, executed by current transformer (CT), and to load efficiency (heating etc.).

"HBM - Heather Break Monitor" SECTION

HBM parameters are:

| f.s. Inp. Amper. | HbS | $0001-\underline{0200}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| delay time Inp. Amp. | Hbt | $0000-0999$ | | | |
| (def. 0030) | | | | | |
| alarm funct. Inp. Amp. | HbF | OnH OFH OrH | OnC OFC OrC | | |
| current display | Hbd | $\underline{\text { OFF }}$ cOn cOF | | | |

Here, explanations of the related parameters:
HbS amperometer input full scale
(the data about the primary current transformer (CT) in use must be placed here).
The secondary one of current transformer must be 100 mA f.s.
Example for TA 100Af.s. \rightarrow TA 100/0,1 Example for TA 10Af.s. \rightarrow TA 10/0,1)
Hbt HBM alarm delay: it corresponds to alarm output delay time in case of change of alarm condition. Current Set corresponds to HBM alarm Set-Point.
N.B. HBM alarm type must be selected.
$\left.\begin{array}{lll}\text { HbF alarm function } & \underline{O n H} & \text { On-state heating current is too high } \\ & & \text { OFH } \\ \text { Off-state heating current is too high }\end{array}\right]$ OrH \quad On-state or Off-state heating current is too high
"diSP" menu have parameters related to global instrument configuration.
Security key is from 5000 to 5999.
For the access to the instrumental configuration push 'E' at least for 4 sec., then push 'DOWN' key 4 times.
Current following parameters are:

Offset	OFFS	$\underline{0000}$	$-99 \div 99$
Protection/security key	kEyL	$\underline{0000}$	$0000 \div 9999$
Keyboard Time-Out	tMt	$\underline{5}$	$5-10-20-30$
Parameters auto-store	Stor	$\underline{n o}$	no -yES
${ }^{\circ} \mathrm{C}-{ }^{\circ} \mathrm{F}$ selection	C-F	$\underline{{ }^{\circ} \mathrm{C}}$	${ }^{\circ} \mathrm{C}-{ }^{\circ} \mathrm{F}$
Decimal-point position	dPoS	$\underline{9999}$	$9999-999.9-99.99-9.999$

Setting values meaning is:
OFFS 0000 The stored value of this function will be algebraically added to the displayed value. It allows to correct inaccuracy, misalignment and improper indication at pleasure. Acceptable values will be between -99 and +99 popints, disregarding decimal point
kEyL 0000 By keylock, it is possible to restrict the access to the functions programming to avoid tampering or wrong setting by not qualified personnel. In use it will be possible to see and inspect all menu and relate parameters but will be prevent possibility to modify parameter's value (if parameter is protected led "LK" flashing).
If key is activated "LK" led is ON (bottom on right of lower display group).
Defaul value is ' 0000 '.
Thanks to setting value is enable or inhibit parameters modification in accord to:
menù SEtP (Set-Point)
$8000 \div 8999$ menù Out
(outputs)
$7000 \div 7999$ menù A.Out
(auxiliary outputs)
$6000 \div 6999$ menù $A \cdot \operatorname{InP}$
(auxiliary inputs)
$5000 \div 5999$ menù diSP
(display)
$4000 \div 4999$ menù ConF
(configuration)
$3000 \div 3999$ menù ProG
(programmer)
Logically higher value lock all lower menù (e.g. 8000 allow free only and solely SEtP menù meanwhile all other menù will be interdicted for setting/modify).
tMt $\quad \mathbf{5}$ It determines the keyboard time-out, that is for how long the instrument will stay in programming mode even if no key will be pressed.
The following choices expressed in seconds are available: ' 5 ', ' 10 ', ' 20 ', ' 30 '. Default value is 5 ".

Stor	no	It determines if the parameter under modification will be automatically updated or not at keyboard time-out
	$\begin{gathered} \text { no } \\ \text { yES } \end{gathered}$	Modified parameters will not be updated (if not confirmed with ENTER key)
		Modified parameters will be automatically updated (if within the admissible limits) at keyboard
		time-out without confirmation with ENTER key.
C-F	${ }^{\circ} \mathrm{C}$	This parameter allows to select the measurement unit to work with: ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
		The frontal indicator (${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ led) shows the current selection.
		If turned off, you are working with ${ }^{\circ} \mathrm{C}$, if turned on you are working with ${ }^{\circ} \mathrm{F}$.
		The relationships between the two measurement units are: ${ }^{\circ} \mathrm{F}=\left({ }^{\circ} \mathrm{Cx} 9 / 5\right)+32$ and ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9$

dPoS 9999 It allows to set the decimal point position, if required, for linear input (not for temperature ranges). The selection will be among the following choices: 9999-999.9-99.99-9.999 .

THERMOSYSTEMS s.r.I. Via delle Industrie, 8 - 24040 Fornovo San Giovanni (BG) - ITALY

 phone: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 1 5 9}$ fax: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 3 6 2}$ web: www.thermosystems.it e-mail:info@thermosystems.it
FUNZIONI RELATIVE AL MENU' "ConF" per TM9Xx "ConF" MENU RELATED FUNCTIONS for TM9Xx

"ConF" menu allow instrument base configuration (input type, display range, etc.).
Security key is from 4000 to 4999.
For the access to the instrumental configuration push 'E' at least for 4 sec., then push 'DOWN' key 5 times.
Proposed parameter are :

Input	InP	J	$\begin{aligned} & P-P .-J-J .-K-K .-L-L .-n-n .-t-t . \\ & -r-S-b-0.05 V-1 V-10 V-0.02 A \end{aligned}$
Minimum input (start scale)	InLo	000.0	$000.0 \div 999.9$
Minimum display	dSLo	0000	$0000 \div 9999$
Maximum input (end scale)	InHi	999.9	$000.0 \div 999.9$
Maximum display	dSHi	9999	$0000 \div 9999$
Filter	FIL	0004	$0001 \div 0020$
Menù 1 Key (SEtP)	LK 1	no	no - yES

Setting values meaning is:
InP J Corresponding to information for controller about input signal type (direct probe or normalized current or voltage signal).
P Temperature transducer
P. Temperature transducer

J Temperature transducer
J. Temperature transducer

K Temperature transducer
K. Temperature transducer

L Temperature transducer
L. Temperature transducer
n Temperature transducer
n. Temperature transducer
t Temperature transducer
t. Temperature transducer
r Temperature transducer
$\mathbf{S} \quad$ Temperature transducer
b Temperature transducer
$0,05 \mathrm{~V}$ continuous voltage input 1V continuous voltage input
10V continuous voltage input
0,02A continuous voltage input

Pt100 range	-0199	$\div 0500{ }^{\circ} \mathrm{C}$	28
Pt100 range	-199,9	$\div 400,0^{\circ} \mathrm{C}$	(-199,9 $\div 752$
Tc 'J ' range	-0000	$\div 0900{ }^{\circ} \mathrm{C}$	$32 \div 16$
Tc 'J ' range	-000,0	$\div 400,0^{\circ} \mathrm{C}$	(32,0 $\div 752$,
Tc 'K ' range	-0000	$\div 1300{ }^{\circ} \mathrm{C}$	$32 \div 237$
Tc 'K' range	-000,0	$\div 400,0^{\circ} \mathrm{C}$	(32,0 $\div 752$
Tc 'L' range	-0000	$\div 0900{ }^{\circ} \mathrm{C}$	$32 \div 165$
Tc ' L ' range	-000,0	$\div 400,0^{\circ} \mathrm{C}$	(32,0 $\div 752$
Tc 'N ' range	-0000	$\div 1300{ }^{\circ} \mathrm{C}$	$32 \div 23$
Tc 'N' range	-000,0	$\div 400,0^{\circ} \mathrm{C}$	(32,0 $\div 752$,
Tc 'T ' range	-0000	$\div 0400{ }^{\circ} \mathrm{C}$	$32 \div 75$
Tc 'T' range	-000,0	$\div 400,0^{\circ} \mathrm{C}$	(32,0 $\div 752$
Tc 'R' range	0000	$\div 1.760{ }^{\circ} \mathrm{C}$	$32 \div 3.20$
Tc 'S' range	0000	$\div 1.760{ }^{\circ} \mathrm{C}$	$32 \div 3.200$
Tc 'B' range	0000	$\div 1.810{ }^{\circ} \mathrm{C}$	$32 \div 3.29$
$0 \div 50 \mathrm{mV}$	range	$0000 \div 9999$	points
$0 \div 1 \mathrm{Vdc}$	range	$0000 \div 9999$	points
$0 \div 10 \mathrm{Vdc}$	range	$0000 \div 9999$	points
$0 \div 20 \mathrm{mAdc}$	range	$0000 \div 9999$	oints

EXAMPLES:

- resistence Pt100 input scale $0 \div 200.0^{\circ} \mathrm{C}$
- thermocouple K input scale: $0 \div 1100^{\circ} \mathrm{F}$
- Input $5 \div \mathbf{3 5 , 4 m V d c} \quad$ reading: $050.0 \div 700.0$
- Input $\mathbf{0} \div \mathbf{0 , 7 5} \mathbf{V d c} \quad$ reading: $000.0 \div 750.0$
- Input $\mathbf{4} \mathbf{\div 2 0} \mathbf{0} \mathbf{0 m A d c} \quad$ reading: $000.0 \div 100.0$
setting: ' lnP ' $=\mathrm{P} . \quad$ ' $\mathrm{C}-\mathrm{F}$ ' ("diSP") $={ }^{\circ} \mathrm{C}$
setting: 'InP'=k \quad ' $\mathrm{C}-\mathrm{F}$ ' ("diSP") $={ }^{\circ} \mathrm{F}$ setting: 'InP' $=0,05 \mathrm{~V}$
setting: 'InP'=1V
setting: 'InP'=0.02A
$\begin{array}{llll}\text { 'InLo' }=0500 & \text { 'dSLo' }=0500 & \text { 'InHi' }=3540 & \text { 'dSHi' }=7000 \\ \text { 'InLo' }=0000 & \text { 'dSLo' }=0000 & \text { 'InHi' }=7500 & \text { 'dSHi' }=7500\end{array}$
'InLo'=0400 \quad 'dSLo' $=0000 \quad$ 'InHi'=2000 \quad 'dSHi'=1000

NOTES:

- for temperature input, the selection of a different measuring unit (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{k}$) will cause the automatic re-calculation of the values.
- all temperature transducers are linearized with theoretical precision best of $0,01^{\circ} \mathrm{C}$ for temperature resistance detector Pt100
and best of $0,1^{\circ} \mathrm{C}$ for thermocouple.
- during configuration decimal point "." position is not meaningful and depend from 'dPoS' parameter ("dISP" group).

THERMOSYSTEMS
S.r.I. Via delle Industrie, 8-24040 Fornovo San Giovanni (BG) - ITALY
phone: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 1 5 9}$ fax: (+39) $\mathbf{0 3 6 3} \mathbf{3 5 0 3 6 2}$ web: www.thermosystems.it e-mail:info@thermosystems.it

InLo	$\underline{\mathbf{0 0 0 . 0}}$	Parameter accessible only for voltage or current input (linear scale). The 'InLo' function corresponds to the minimum value of the input variable.
dSLo	$\underline{\mathbf{0 0 0 0}}$	Parameter accessible only for voltage or current input (linear scale). The 'dSLo' function corresponds to value displayed minimum.
InHi	$\underline{\underline{999.9}}$	Parameter accessible only for voltage or current input (linear scale). The 'InHi' function corresponds to the maximum value of the input variable.
dSHi	Parameter accessible only for voltage or current input (linear scale). The 'dISHi' function corresponds to value displayed maximum.	
LK 1	It is the number of readings used to calculate the algebraic average and then to display the result. Admissible values are between 1 and 20. Setting it at 1, we get the max response speed because every correct reading is displayed. Setting it at 25, we have the max steady state of reading, even with noisy signals.	
no	Special key for hide some available setting for "SetP" menù so that it can be very simple and functional in use. "SEtP" menu available with all functions. "SEtP" menu available in short form.	

THERMOSYSTEMS
s.r.l. Via delle Industrie, 8-24040 Fornovo San Giovanni (BG) - ITALY phone: (+39) $\mathbf{0 3 6 3} 350159$ fax: (+39) $\mathbf{0 3 6 3} 350362$ web: www.thermosystems.it e-mail:info@thermosystems.it

UTILIZZO DELLA TASTIERA					
ENTER (CNF)	UP	DOWN	FUNCTION (F)	standing	action
	*			immediate	Set-Point adjustement
		*		immediate	Set-Point adjustement
			*	8"	switch in MANUAL function (release immediate)
*				4"	menù parameters adjustement (IV Ielev : serial, filter, ...)
*			*	4"	menù REGULATOR / PROGRAMMER parameters
*	*			immediate	Selftuning / Autotuning ON - OFF
*		*		$4^{\prime \prime}$	default parameters loading
*		*		immediate	Manual Alarm Reset (in concerned Set Alarm)
	*		*	immediate	START PROGRAMMER (time counter unlock ... and reset if first time)
		*	*	immediate	STOP PROGRAMMER (time counter lock ...)
	*	*	*	immediate	RESET PROGRAMMER (point to setting program, step 0, time 0 and time counter lock ...)

NOTES:

- action on the key is achieved on release of the keys themselves.
- to start the "active" program (set in the function P.Act of the group "GEn"), you make a RESET and then a START .
- to pause the countdown impose a STOP, START to resume ...

STRUCTURE OF PROGRAMS

The programs are structured in a simple and straightforward logic.
Ten (10) programs are provided, numbered from 0 to 9.
Each program consists of 10 steps (segments) numbered from 0 to 9.
For each step must be defined:

- final set-point value (initial set-point corresponds to the finish set-point of the previous step and in the case of step " 0 " corresponds to local set-point of controller).
- duration of step (time, according to the selected units of measurement in the parameter 'time' of each program).
- pass relay(s) status (if desired).
- the selected program (function P.ACt) will be run from a minimum of 1 to a maximum of 99 times according to the parameter 'rEPt' (repetition).

SHORTS PROGRAMS

If the desired program does not employ all 10 steps is typical enough to set time zero (0) to final step.at which you want to stop the execution of the program.
The set-point will be maintained corresponding to the set-point of step where you have defined time zero.
It is easy to understand the great freedom of choice that allows this type of structure.
SHORTS PROGRAMS example:
local Set-Point $=\quad 50^{\circ} \mathrm{C}$
step 0 Set-Point $0=150^{\circ} \mathrm{C}$
step 1 Set-Point $1=150^{\circ} \mathrm{C} \quad$ time $1=60^{\prime}$
step 2 Set-Point $2=200^{\circ} \mathrm{C} \quad$ time $2=30^{\prime}$
step 3 Set-Point $3=30^{\circ} \mathrm{C}$ time $3=00^{\prime}$
Description of behavior (with parameter 'REPT' = 1):
To beginning the program starts with a Set-Point of $50^{\circ} \mathrm{C}$ and in 10 minutes and reaches $150^{\circ} \mathrm{C}$.
Remains at $150^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $200^{\circ} \mathrm{C}$.
Here ends the execution of the program (time $3=00^{\prime}$) and the instrument retains the setting to $30^{\circ} \mathrm{C}$.
Description of behavior (with parameter 'REPT' = 3):
To beginning the program starts with a Set-Point of $50^{\circ} \mathrm{C}$ and in 10 minutes and reaches $150^{\circ} \mathrm{C}$.
Remains at $150^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30 up to $200^{\circ} \mathrm{C}$. End of the first cycle.
The program continues with a Set-Point of $200^{\circ} \mathrm{C}$ and 10 minutes to reach $150^{\circ} \mathrm{C}$.
Remains at $150^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $200^{\circ} \mathrm{C}$. End of the second cycle.
The program continues with a Set-Point of $200^{\circ} \mathrm{C}$ and 10 minutes to reach $150^{\circ} \mathrm{C}$.
Remains at $150^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $200^{\circ} \mathrm{C}$. End of the third cycle.
Here ends the execution of the program (time $3=00^{\prime}$) and the instrument retains the setting to $30^{\circ} \mathrm{C}$.
It follows then that the latest step (with time 0) is never executed during rehearsals but only after the last repetition.
Therefore it must be considered both as a step of signaling the end of the program itself (time zero) and as a definition of the final Set-Point.

LONG PROGRAMS

If the profile requires a number of steps over 10 traditional just setting the parameter 'links' (Links) to' YES ' and the program will 'paste' to the following to obtain the availability of the required steps.
Repeating this approach for programs in basic 10 steps you get the availability of the required steps.
The maximum obtainable is a single large program made up of 100 steps.
Basis for the program who does not take all 10 steps available that is what it says about 'SHORTS PROGRAMS'.
LONG PROGRAMS example (parameter 'Link' = YES):

		local Set-Point	$=$	$50^{\circ} \mathrm{C}$
step 0	program X	Set-Point 0	$=$	$150^{\circ} \mathrm{C}$
step 1	program X	Set-Point 1	$=$	$150^{\circ} \mathrm{C}$
step 2	program X	Set-Point 2	$=$	$200^{\circ} \mathrm{C}$
step 3	program X	Set-Point 3	$=$	$200^{\circ} \mathrm{C}$
step 4	program X	Set-Point 4	$=$	$250^{\circ} \mathrm{C}$
step 5	program X	Set-Point 5	$=$	$250^{\circ} \mathrm{C}$
step 6	program X	Set-Point 6	$=$	$300^{\circ} \mathrm{C}$
step 7	program X	Set-Point 7	$=$	$300^{\circ} \mathrm{C}$
step 8	program X	Set-Point 8	$=$	$350^{\circ} \mathrm{C}$
step 9	program X	Set-Point 9	$=$	$350^{\circ} \mathrm{C}$
step 0	program X+1	Set-Point 0	$=$	$400^{\circ} \mathrm{C}$
step 1	program X+1	Set-Point 1	$=$	$400^{\circ} \mathrm{C}$
step 2	program X+1	Set-Point 2	$=$	$450^{\circ} \mathrm{C}$
step 3	program X+1	Set-Point 3	$=$	$30^{\circ} \mathrm{C}$

time $0=$	10'
time $1=$	$60 \cdot$
time 2	30 '
time 3	$60 \cdot$
time 4	30^{\prime}
time 5	$60 \cdot$
time 6	30^{\prime}
time 7	$60 \cdot$
time 8	30
time 9	60'
time 0	30'
time $1=$	60'
time $2=$	30
time $3=$	00'

Description of behavior (with parameter 'rEPt' = 1):
to beginning the program starts with a Set-Point of $50^{\circ} \mathrm{C}$ and in 10 minutes and reaches $150^{\circ} \mathrm{C}$.
I. Remains at $150^{\circ} \mathrm{C}$ for one hour ($60{ }^{\prime}$) and then in 30 up to $200^{\circ} \mathrm{C}$.
II. Remains at $200^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $250^{\circ} \mathrm{C}$.
III. Remains at $250^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $300^{\circ} \mathrm{C}$.
IV. Remains at $300^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $350^{\circ} \mathrm{C}$.
V. Remains at $350^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $400^{\circ} \mathrm{C}$.
VI. Remains at $400^{\circ} \mathrm{C}$ for one hour (60 ') and then in 30^{\prime} up to $450^{\circ} \mathrm{C}$.

Here ends the execution of the program (time $3=00$ 'of the $\mathrm{X}+1$) and the instrument retains the setting to $30^{\circ} \mathrm{C}$.
Description of behavior (with parameter 'REPT' = 3):
to beginning the program starts with a Set-Point of $50^{\circ} \mathrm{C}$ in 10 minutes and reaches $150^{\circ} \mathrm{C}$.
Performs the operation described above I. II. III. IV. V. VI. End of the first cycle.
The program continues with a Set-Point at $450^{\circ} \mathrm{C}$ and 10 minutes to reach $150^{\circ} \mathrm{C}$.
Performs the operation described above I. II. III. IV. V. VI. End of the second cycle.
The program continues with a Set-Point at $450^{\circ} \mathrm{C}$ and 10 minutes to reach $150^{\circ} \mathrm{C}$.
Performs the operation described above I. II. III. IV. V. VI. End of the third cycle.
Here ends the execution of the program (time 3 of the $X+1=00^{\prime}$) and the controller maintains the adjustment at $30^{\circ} \mathrm{C}$ It follows then that the latest step (with time 0) is never executed during rehearsals but only after the last repetition.
Therefore it must be considered both as a step of signaling the end of the program itself (time zero) and as a definition of the final Set-Point.

GRAPHICAL EXAMPLES

THERMOSYSTEMS s.r.I. Via delle Industrie, 8-24040 Fornovo San Giovanni (BG) - ITALY phone: (+39) $\mathbf{0 3 6 3} 350159$ fax: (+39) $\mathbf{0 3 6 3} 350362$ web: www.thermosystems.it e-mail: info@thermosystems.it

